

Conditional Statements are features of a programming language, which perform different
computations or actions depending on whether the given condition evaluates to true or false.
Conditional statements in python are of 3 types

 If statement

 If else statement

 If elif statement

 Nested if else

Python Conditional Statements

1. If Statement : if Statement is used to run a statement conditionally i.e. if given
condition is true then only the statement given in if block will be executed.

 if <condition>:

 <if statement block >

For example consider the code given below

 if (percentage > 33):

 print (“Pass”)

Explaination : In the above code if value of percentage is above 33 then only

the message “Pass” will be printed.

2. If else Statement In the case of if else statement If given condition is true then the
statement given in if block will be executed otherwise(else) the statements written in
else block will be executed

 if <condition>:

 <if statement block >

 else:

 <else statement block>

For example consider the code given below

 if (percentage > 33):

 print (“Pass”)

 else:

 print(“Fail”)

Explaination : In the above code if value of percentage is above 33 then only

the message “Pass” will be printed otherwise it will print “Fail”

3. If elif Statement if elif is used for execution OF STATEMENTS based on several
alternatives. Here we use one or more elif (short form of else if) clauses. Python
evaluates each condition in turn and executes the statements corresponding to the first
if that is true. If none of the expressions are true, and an else clause will be executed

Syntax:-
if <condition>:

 <statement(s)>

elif <condition>:

 <statement(s)>

.

.

else:

 <statement(s)>

Explaination : In the above code if value of percentage is above 33 then
only the message “Pass” will be printed otherwise it will print “Fail”

Example:

 If (percentage >90):

 Print(“Outstanding”)

elif (percentage >80):

 print (“Excellent”)

elif (percentage >70):

 print (“VeryGood”)

elif (percentage >60):

 print (“Good”)

elif (percentage >33):

 print (“Pass”)

else

 print(“Fail”)

Explaination : In the above code

if value of percentage is above 90 then it will print “Outstanding”

if value of percentage is above 80 then it will print “Excellent”

if value of percentage is above 70 then it will print “Very Good”

if value of percentage is above 60 then it will print “Good”

if value of percentage is above 80 then it will print “Pass”

if no condition is true then it will print “Fail”
In above code only 1 condition can be true at a time if no condition is true then else statement will be

executed

4. Nested If else Statement A nested if is an if statement that is the target of another if
statement. Nested if statement means an if statement within another if statement.

Syntax:-

if (<condition1>):

 statement(s)

 if (<condition2>):

 statement(s)

 else

else:

 if (<condition3>):

 statement(s)

 else

 Statement(s)

Example

if color =”red”:

 if item=”fruit”:

 print(“ It is an Apple”)

 else :

 print(“It may be Tomato or Rose”)

else:

 if color=”Yellow”:

 print(“It is a Banana”)

 else

 print(“It may be corn or Marigold ”)

OR

if color =”red”:

 if item=”fruit”:

 print(“ It is an Apple”)

 else :

 print(“It may be Tomato or Rose”)

elif color=”Yellow”:

 print(“It is a Banana”)

 else

 print(“It may be corn or Marigold ”)

Every value in Python has a data type. Since everything is an object in Python
programming, data types are actually classes, and variables are instance
(object) of these classes.

There are various data types in Python. Some of the important types are listed
below

Data Types in Python

 Python Numbers
 Python List
 Python Tuple
 Python Strings
 Python Set
 Python Dictionary

Chart : Python Data Types

Data types in Python

1. Python Data Type – Numeric

Python numeric data type is used to hold numeric values like;

Data Type Use

Int holds signed integers of non-limited length.

Long holds long integers(exists in Python 2.x,

deprecated in Python 3.x).

Float holds floating precision numbers and it’s
accurate upto 15 decimal places.

complex holds complex numbers.

2. Python Data Type – String

String is a sequence of characters. Python supports Unicode characters.
Generally strings are represented by either single or double quotes.

>>> s1 = "This is a string"
>>> s2= '''a multiline String'''

Single Line
String

“hello world”

Multi Line
String

“””Gwalior
Madhya Pradesh”””

Raw String r"raw \n string" [Used when we want to have a string that contains

backslash and don’t want it to be treated as an escape character.]

Character "C" [Single letter]

Unicode
string

u"\u0938\u0902\u0917\u0940\u0924\u093E" will print 'सगंीता'

3. Python Data Type – List

List is a versatile data type exclusive in Python. In a sense it is same as array in
C/C++. But interesting thing about list in Python is it can simultaneously hold
different type of data.

Formally list is a ordered sequence of some data written using square
brackets ([]) and commas(,)

4. Python Tuple

Tuple is an ordered sequences of items same as list. The only difference is that
tuples are immutable. Tuples once created cannot be modified.

Tuples are used to write-protect data and are usually faster than list as it
cannot change dynamically. It is defined within parentheses () where items are
separated by commas

>>> t = (50,'Learning is fun', 1+3j, 45.67) # Can store mixed data types

Advantages of Tuple over List

 Since tuple are immutable, iterating through tuple is faster than with list. So
there is a slight performance boost.

 We generally use tuple for heterogeneous (different) datatypes and list for
homogeneous (similar) datatypes.

 Tuples that contain immutable elements can be used as key for a dictionary.
With list, this is not possible.

 If you have data that doesn't change, implementing it as tuple will guarantee
that it remains write-protected.

5. Python Set

Set is an unordered collection of unique items. Set is defined by values
separated by comma inside braces { }.Items in a set are not ordered.

a = {5,2,3,1,4}

printing set variable

 print("a = ", a)

data type of variable a

 print(type(a)) # <class 'set'>

6. Python Dictionary

Dictionary is an unordered collection of key-value pairs.

It is generally used when we have a huge amount of data. Dictionaries are
optimized for retrieving data. We must know the key to retrieve the value.

In Python, dictionaries are defined within Curly braces {} with each item being
a pair in the form key: value.
 Key and value can be of any type.

Dictionary Values can be printed using key eg d1[‘Name’]

Python Control Statements

In any programming language a program may execute

sequentially, selectively or iteratively. Every

programming language provides constructs to support

Sequence, Selection and Iteration. In Python all these

construct can broadly categorized in 2 categories.

A. Conditional Control Construct

(Selection, Iteration)

B. Un- Conditional Control Construct

(pass, break, continue, exit(), quit())

Python have following types of control statements

1. Selection (branching) Statement

2. Iteration (looping) Statement

3. Jumping (break / continue)Statement

Python Selection Statements

Python have following types of selection statements

1. if statement

2. if else statement

3. Ladder if else statement (if-elif-else)

4. Nested if statement

Conditional Control

Statements

Un Conditional Control

Statements

Python If statements

This construct of python program consist of one if

condition with one block of statements. When condition

becomes true then executes the block given below it.

Syntax:

if (condition):
 …………………..
 …………………..
 …………………..

Flowchart

Flow Chart: it is a graphical

representation of steps an

algorithm to solve a problem.

Example:

 Age=int(input(“Enter Age: “))

If (age>=18):

 Print(“You are eligible for vote”)

If(age<0):

 Print(“You entered Negative Number”)

Python if - else statements

This construct of python program consist of one if condition with two

blocks. When condition becomes true then executes the block given

below it. If condition evaluates result as false, it will executes the block

given below else.

Syntax:

if (condition):

 …………………..

else:

 …………………..

 Flowchart

Example-1:

Age=int(input(“Enter Age: “))

if (age>=18):

 print(“You are eligible for vote”)
else:

print(“You are not eligible for vote”)

Example-2:

N=int(input(“Enter Number: “))

if(n%2==0):

 print(N,“ is Even Number”)

Else:

print(N,“ is Odd Number”)

Python Ladder if else statements (if-elif-else)

This construct of python program consist of more than one if condition.

When first condition evaluates result as true then executes the block

given below it. If condition evaluates result as false, it transfer the

control at else part to test another condition. So, it is multi-decision

making construct.

Syntax:

if (condition-1):

 …………………..

 …………………..

elif (condition-2):

 …………………..

…………………..

elif (condition-3):

…………………..

…………………..

else:

…………………..

…………………..

Example:

num=int(input(“Enter Number: “))

If (num>=0):

 Print(“You entered positive number”)

elif (num<0):

 Print(“You entered Negative number”)

else:

Print(“You entered Zero ”)

Python Nested if statements

It is the construct where one if condition take part inside of other if

condition. This construct consist of more than one if condition. Block

executes when condition becomes false and next condition evaluates

when first condition became true.

So, it is also multi-decision making construct.

Syntax: FlowChart

if (condition-1):

 if (condition-2):

 ……………

 ……………

 else:

 ……………

……………

else:

…………………..

…………………..

Example:

num=int(input(“Enter Number: “))

If (num<=0):
 if (num<0):

 Print(“You entered Negative number”)

 else:

Print(“You entered Zero ”)

else:

 Print(“You entered Positive number”)

Program: find largest number out of given three numbers

x=int(input("Enter First Number: "))

y=int(input("Enter Second Number: "))

z=int(input("Enter Third Number: "))

if(x>y and x>z):

 largest=x

elif(y>x and y>z):

 largest=y

elif(z>x and z>y):

 largest=z

print("Larest Value in %d, %d and %d is: %d"%(x,y,z,largest))

Program: calculate simple interest

Formula: principle x (rate/100) x time

p=float(input("Enter principle amount: "))

r=float(input("Enter rate of interest: "))

t=int(input("Enter time in months: "))

si=p*r*t/100

print("Simple Interest=",si)

Program: calculate EMI
Input the following to arrive at your Equal Monthly Installment -EMI:

1. Loan Amount: Input the desired loan amount that you wish to
avail.

2. Loan Tenure (In Years): Input the desired loan term for which you
wish to avail the loan.

3. Interest Rate (% P.A.): Input interest rate.

4. EMI=[[P*R*(1+R)N] / [(1+R)N
-1]]

P=int(input("Enter loan amount: "))

YR=float(input("Enter rate of interest P.A. : "))

T=int(input("Enter tenure(Installments) in years: "))

MR=YR/(12*100) # Monthly Rate

EMI=(P*MR*(1+MR)**T)/(((1+MR)**T)-1)

print("Principle Amount: ",P)

print("Rate of Interest(Yearly): ",YR)

print("No. of Installments: ",T)

print("EMI Amount: ",EMI)

Program: Sorting of three number. (Ascending and Descending)

x=int(input("Enter First Number: "))

y=int(input("Enter Second Number: "))

z=int(input("Enter Third Number: "))

min=max=mid=None

if(x>=y and x>=z):

 if(y>=z):

 min,mid,max=z,y,x

 else:

 min,mid,max=y,z,x

elif(y>=x and y>=z):

 if(x>=z):

 min,mid,max=z,x,y

 else:

 min,mid,max=x,z,y

elif(z>=x and z>=y):

 if(x>=y):

 min,mid,max=y,x,z

 else:

 min,mid,max=x,y,z

print("Numbers in Ascending Order: ",min,mid,max)

print("Numbers in Descending Order: ",max,mid,min)

Program: Absolute Value

Absolute value of a given number is always measured as positive

number. This number is the distance of given number from the 0(Zero).

The input value may be integer, float or complex number in Python.

The absolute value of given number may be integer or float.

(i). Absolute Value of -5 is 5 (ii) Absolute Value of -3 is 3 (iii) Absolute Value of 4 is 4

n=float(input("Enter a number to find absolute value: "))

print("Absolute Value using abs(): ",abs(n))

if(n-int(n)>=0 or n-int(n)<=0): # This code is used to identify that number is float or int type.

 pass

else:

 n=int(n)

if(n<0):

 print("Absolute Value= ",n*-1)

else:

 print("Absolute Value= ",n)

Program: Calculate the Total selling price after levying the GST (Goods

and Service Tax) as CGST and SGST on sale.

CGST (Central Govt. GST), SGST (State Govt. GST)

--

Sale amount CGST Rate SGST Rate

--

0-50000 5% 5%

Above 50000 18% 18%

--

amt=float(input("Enter total Sale Amount: "))

if(amt<=50000):

 rate=5

else:

 rate=18

cgst=sgst=amt*rate/100

tot_amt=amt+cgst+sgst

print("Amount of Sale: ",amt)

print("GST rate of Sale: ",rate)

print("CGST of Sale: ",cgst)

print("SGST of Sale: ",sgst)

print("Total Payable Amount of Sale: ",tot_amt)

Python Iteration Statements
The iteration (Looping) constructs mean to execute the block of

statements again and again depending upon the result of condition.

This repetition of statements continues till condition meets True result.

As soon as condition meets false result, the iteration stops.

Python supports following types of iteration statements

1. while

2. for

Four Essential parts of Looping:

i. Initialization of control variable

ii. Condition testing with control variable

iii. Body of loop Construct

iv. Increment / decrement in control variable

Python while loop

The while loop is conditional construct that executes a block of

statements again and again till given condition remains true. Whenever

condition meets result false then loop will terminate.

Syntax:

Initialization of control variable

while (condition):

 …………………..

 Updation in control variable

 ..…………………

Flowchart

Example: print 1 to 10 numbers

num=1 # initialization

while(num<=10): # condition testing

 print(num, end=” “)

 Body of loop

num + = 1 # Increment

Example: Sum of 1 to 10 numbers.

num=1

sum=0

while(num<=10):

 sum + = num

 num + = 1

print(“The Sum of 1- 10 numbers: “,sum)

Example: Enter per day sale amount and find average sale for a week.

Python range() Function

The range() function returns a sequence of numbers, starting from 0

by default, and increments by 1 (by default), and ends at a specified

number. The common format of range() is as given below:

range (start value, stop value, step value)

Where all 3 parameters are of integer type

Start value is Lower Limit

Stop value is Upper Limit

Step value is Increment / Decrement

Note: The Lower Limit is included but Upper Limit is not included in result.

Example

range(5) => sequence of 0,1,2,3,4

range(2,5) => sequence of 2,3,4

range(1,10,2) => sequence of 1,3,5,7,9

range(5,0,-1) => sequence of 5,4,3,2,1

range(0,-5) => sequence of [] blank list (default Step is +1)

range(0,-5,-1) => sequence of 0, -1, -2, -3, -4

range(-5,0,1) => sequence of -5, -4, -3, -2, -1

range(-5,1,1) => sequence of -5, -4, -3, -2, -1, 0

L=list(range(1,20,2)

Print(L) Output: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Start and Step Parameters are

optional default value will be as

Start=0 and Step=1

Python for loop

A for loop is used for iterating over a sequence (that is either a list, a tuple, a

string etc.) With for loop we can execute a set of statements, and for loop can

also execute once for each element in a list, tuple, set etc.

Example: print 1-10 numbers Example: print 10-1 numbers

for num in range(1,11,1): for num in range(10,0,-1):

 print(num, end=” “) print(num, end=” “)

Output: 1 2 3 4 5 6 7 8 9 10 Output: 10 9 8 7 6 5 4 3 2 1

Print each element in a fruit list:

fruits = ["mango", "apple", "grapes", "cherry"]

for x in fruits:

 print(x)

output:

mango

apple

grapes

cherry

for x in "TIGER":

 print(x)

output:

T

I

G

E

R

Membership Operators:

The “in” and “not in” are membership

operators. These operators check either

given value is available in sequence or not.

The “in” operator returns Boolean True

result if value exist in sequence otherwise

returns Boolean False.

The “not in” operator also returns Boolean

True / False result but it works opposite to

“in” operator.

else in for Loop

The else keyword in for loop specifies a block of code to be executed when the

loop is finished:

for x in range(4):

 print(x, end=” “)

else:

 print("\nFinally finished!")

output: 0 1 2 3

 Finally finished!

Nested Loops

A nested loop is a loop inside another loop.

city = ["Jaipur", "Delhi", "Mumbai"]

fruits = ["apple", "mango", "cherry"]

for x in city:

 for y in fruits:

 print(x, “:”,y)

output:

Jaipur : apple

Jaipur : mango

Jaipur : cherry

Delhi : apple

Delhi : mango

Delhi : cherry

Mumbai : apple

Mumbai : mango

Mumbai : cherry

Un- Conditional Control Construct
 (pass, break, continue, exit(), quit())

pass Statement (Empty Statement)

The pass statement do nothing, but it used to complete the syntax of

programming concept. Pass is useful in the situation where user does not

requires any action but syntax requires a statement. The Python compiler

encounters pass statement then it do nothing but transfer the control in flow of

execution.

a=int(input("Enter first Number: "))

b=int(input("Enter Second Number: "))

if(b==0):

 pass

else:

 print("a/b=",a/b)

for x in [0, 1, 2]:

 pass

Jumping Statements
break Statement

The jump- break statement enables to skip over a part of code that

used in loop even if the loop condition remains true. It terminates to

that loop in which it lies. The execution continues from the

statement which find out of loop terminated by break.

n=1

while(n<=5):

 print("n=",n)

 k=1

 while(k<=5):

 if(k==3):

 break

 print("k=",k, end=" ")

 k+=1

 n+=1

 print()

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

output: apple

Output:

n= 1

k= 1 k= 2

n= 2

k= 1 k= 2

n= 3

k= 1 k= 2

n= 4

k= 1 k= 2

n= 5

k= 1 k= 2

Continue Statement

Continue statement is also a jump statement. With the help of

continue statement, some of statements in loop, skipped over

and starts the next iteration. It forcefully stop the current

iteration and transfer the flow of control at the loop

controlling condition.

i = 0

while i <=10:

 i+=1

 if (i%2==1):

 continue

 print(I, end=” “)

output: 2 4 6 8 10

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue

 print(x)

output:

apple

cherry

Thanks

What is Python Module

 A Module is a file containing Python definitions
(docstrings) , functions, variables, classes and
statements.

 Act of partitioning a program into individual
components(modules) is called modularity. A module is a
separate unit in itself.

 It reduces its complexity to some degree

 It creates numbers of well-defined, documented boundaries
within program.

 Its contents can be reused in other program, without having
to rewrite or recreate them.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Structure of Python module

 A python module is simply a normal python file(.py)

and contains functions, constants and other elements.

 Python module may contains following objects:

 docstring Triple quoted comments. Useful for documentation

purpose

Variables and

constants

For storing values

Classes To create blueprint of any object

Objects Object is an instance of class. It represent class in real world

Statements Instruction

Functions Group of statements

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Composition/Structure of python module

MODULES

VARIABLES

FUNCTIONS

VARIABLES

CLASSES

MEMBERS

METHODS

OTHER

PYTHON

MODULES

OTHER

PYTHON

MODULES

IMPORT

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Importing Python modules

 To import entire module

 import <module name>

 Example: import math

 To import specific function/object from module:

 from <module_name> import <function_name>

 Example: from math import sqrt

 import * : can be used to import all names from

module into current calling module

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Accessing function/constant of imported module

 To use function/constant/variable of imported module

we have to specify module name and function name

separated by dot(.). This format is known as dot

notation.

 <module_name>.<function_name>

 Example: print(math.sqrt(25))

 How ever if only particular function is imported using

from then module name before function name is not

required. We will se examples with next slides.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Types of Modules

 There are various in-built module in python, we will

discuss few of them

 Math module

 Random module

 Statistical module

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Math module

 This module provides various function to perform

arithmetic operations.

 Example of functions in math modules are:

 Example of variables in math modules are:

 pi

 e

sqrt ceil floor pow

fabs sin cos tan

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Math module functions

 sqrt(x) : this function returns the square root of

number(x).

 pow(x,y) : this function returns the (x)y

 ceil (x) : this function return the x rounded to next

integer.

module name is

required before

function name here

module name is not

required before

function name here

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Math module functions

 floor(x) : this function returns the x rounded to previous

integer.

 fabs(x) : this function returns absolute value of float x.

absolute value means number without any sign

 sin (x) : it return sine of x (measured in radian)

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Math module functions

 cos(x) : it return cosine of x (measured in radian)

 tan(x) : it return tangent of x (measured in radian)

 pi : return the constant value of pi (22/7)

 e : return the constant value of constant e

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Using Random Module

 Python has a module namely random that provides
random – number generators. Random number
means any number generated within the given
range.

 To generate random number in Python we have to
import random module

 2 most common method to generate random number
in python are :

 random() function

 randint(a,b) function

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

random() function

 It is floating point random number generator

between 0.0 to 1.0. here lower limit is inclusive

where as upper limit is less than 1.0.

 0<=N<1

 Examples:

Output is less than 1

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

random() function

 To generate random number between given range

of values using random(), the following format

should be used:

 Lower_range + random() * (upper_range-lower_range)

 For example to generate number between 10 to 50:

 10 + random() * (40)

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

randint() function

 Another way to generate random number is

randint() function, but it generate integer numbers.

 Both the given range values are inclusive i.e. if we

generate random number as :

 randint(20,70)

 In above example random number between 20 to 70 will

be taken. (including 20 and 70 also)

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

E

X

A

M

P

L

E

for more updates visit: www.python4csip.com

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

O

U

T

P

U

T

for more updates visit: www.python4csip.com

Just a Minute…

 Give the following python code, which is repeated

four times. What could be the possible set of

output(s) out of four sets (ddd is any combination of

digits)

 import random

 print(15 + random.random()*5)

 a) b) c) d)

17.ddd

19.ddd

20.ddd

15.ddd

15.ddd

17.ddd

19.ddd

18.ddd

14.ddd

16.ddd

18.ddd

20.ddd

15.ddd

15.ddd

15.ddd

15.ddd

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Just a Minute…

 What could be the minimum possible and maximum

possible numbers by following code

 import random

 print(random.randint(3,10)-3)

 In a school fest, three randomly chosen students out

of 100 students (having roll number 1 -100) have to

present the bouquet to the guests. Help the school

authorities choose three students randomly

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Just a Minute…

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Just a Minute… VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

Look at the following Python code and find the possible output(s) from the

options (i) to (iv) following it. Also, write the maximum and the minimum values

that can be assigned to the variable PICKER.

Note:

‐ Assume all the required header files are already being included in the code.

‐ The function randint() generates an integer between 1 to n

import random

PICKER=1+random.randint(0,2)

COLOR=[”BLUE”,”PINK”,”GREEN”,”RED”]

for I in range(1,PICKER+1):

 for j in range(I+1):

 print(COLOR[j],end=‘’)

 print()

for more updates visit: www.python4csip.com

What are the possible outcome(s) executed from the following

code? Also specify the maximum and minimum values that

can be assigned to variable PICK

1)

DELHIDELHI

MUMBAIMUMBAI

CHENNAICHENNAI

KOLKATAKOLKATA

2)

DELHI

DELHIMUMBAI

DELHIMUMBAICHENNAI

3)

DELHI

MUMBAI

CHENNAI

KOKLATA

4)

DELHI

DELHIMUMBAI

KOLKATAKOLKATAKOLKATA

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

randrange() function

 This function is also used to generate random

number within given range.

 Syntax

 randrange(start,stop,step)

random output between 5 to 14, may vary

It will generate random

number between 5 to 14

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

randrange() function

It will generate

random number

between 1 to 29 with

stepping of 2 i.e. it

will generate number

with gap of 2 i.e.

1,3,5,7 and so on

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Mathematics Game for Kids

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Mathematics Game for Kids

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Statistical Module

 This module provides functions for calculating

mathematical statistics of numeric (Real-valued)

data.

 We will deal with 3 basic function under this module

 Mean

 Median

 mode

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Mean

 The mean is the average of all numbers and is

sometimes called the arithmetic mean.

55, is the average of all numbers in the list

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Median

 The median is the middle number in a group of

numbers.

 With odd number of

elements it will simply

return the middle

position value

With even number of

elements, it will return

the average of value

at mid + mid-1 i.e.

(50+60)/2 = 55.0

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Mode

 The mode is the number that occurs most often within

a set of numbers i.e. most common data in list.

Here, 10 occurs

most in the list.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Python Classes and
Objects

A Basic Introduction

Coming up: Topics 1

Topics
•  Objects and Classes
•  Abstraction
•  Encapsulation
•  Messages

What are objects
•  An object is a datatype that stores data, but

ALSO has operations defined to act on the
data. It knows stuff and can do stuff.

•  Generally represent:
–  tangible entities (e.g., student, airline ticket, etc.)
–  intangible entities (e.g., data stream)

•  Interactions between objects define the
system operation (through message passing)

What are Objects
•  A Circle drawn on the screen:

•  Has attributes (knows stuff):
–  radius, center, color

•  Has methods (can do stuff):
– move
– change color

Design of Circle object
•  A Circle object:

–  center, which remembers the center point of the
circle,

–  radius, which stores the length of the circle’s
radius.

–  color, which stores the color

•  The draw method examines the center and
radius to decide which pixels in a window
should be colored.

•  The move method sets the center to another
location, and redraws the circle

Design of Circle
•  All objects are said to be an instance of

some class. The class of an object
determines which attributes the object
will have.

•  A class is a description of what its
instances will know and do.

Circle: classes and objects

Circle Class

Attributes:
- location, radius,color

Methods:
- draw, move

Classes are blueprints
or directions on how to
create an object

Objects are instantiations of
the class (attributes are set)

3 circle objects are shown (each has
different attribute values)

Circle Class
class Circle(object):

 def __init__(self, center, radius):
 self.center = center
 self.radius = radius

 def draw(self, canvas):
 rad = self.radius
 x1 = self.center[0]-rad
 y1 = self.center[1]-rad
 x2 = self.center[0]+rad
 y2 = self.center[1]+rad
 canvas.create_oval(x1, y1, x2, y2, fill='green')

 def move(self, x, y):
 self.center = [x, y]

Beginning of the class definition

The constructor. This is called when
someone creates a new Circle, these
assignments create attributes.

A method that uses attributes to draw the
circle

A method that sets the center to a new
location and then redraws it

objects/CircleModule.py

Constructors
•  The objcet’s constructor method is named __init__

•  The primary duty of the constructor is to set the state of the
object’s attributes (instance variables)

•  Constructors may have default parameters

•  Calling an object’s constructor (via the class name) is a
signal to the interpreter to create (instantiate) a new object
of the data type of the class
–  myCircle = Circle([10,30], 20) # Never pass “self”, it’s automatic

Creating a Circle
myCircle = Circle([10,30], 20)

•  This statement creates a new Circle
object and stores a reference to it in the
variable myCircle.

•  The parameters to the constructor are
used to initialize some of the instance
variables (center and radius) inside
myCircle.

Creating a Circle
myCircle = Circle([10,30], 20)

•  Once the object has been created, it
can be manipulated by calling on its
methods:
myCircle.draw(canvas)
myCircle.move(x,y)

Objects and Classes
•  myCircle = Circle([10,30], 20)
•  myOtherCircle = Circle([4,60], 10)

•  myCircle and myOtherCircle are objects or instances of the
Class Circle

•  The circle class defines what a circle knows (attributes) and
what it does (methods)… but to have a circle, you need to
construct an object from that class definition

•  Similar to a “list”. Python defines what a list is, and can do
(slicing, indexing, length(…), etc… but until you create one, you
don’t really have one

Using the Circle
•  from CircleModule import *
myCircle = Circle([10,30], 20)

print
"CENTER :"+str(myCircle.center)

>>> CENTER :(10, 30)

To get an instance variable from an
object, use: <<object>>.variable

What happens if the instance variable
doesn’t exist?

Using Instance Variables

myCircle = Circle([10,30], 20)

print "CENTER :"+str(circle.carl)

>>> AttributeError: Circle
instance has no attribute
’carl’

Using Instance Variables
myCircle.bob = 234

 Think: What happens if you assign ANY
variable in python that doesn’t exist?

john = 234

What happens if you set an instance
variable that doesn’t exist?

Python automatically creates a new variable if it doesn’t exist.
For instance variables this works the same… if you assign an
instance variable that doesn’t exist, Python just creates it…
Bad practice though… create all instance variables in the

constructor!

Summary: Using instance variables

•  Creating new instance variables just
means assigning them a value:
– self.bob = 234 # In constructor

•  Using instance variables is done through
dot notation:
– val = myCircle.bob # Outside the class definition
– val = self.bob # Inside class methods

Attributes / Instance Variables
•  Attributes represent the characteristics of a class. When an object is

instantiated and the values are assigned to attributes, they are then
referred to as instance variables.

•  The values of the instance variables define the state of the individual
object

•  They are referred to as instance variables because the values
assigned to an individual object (instance of a class) are unique to that
particular class

•  Attributes may be public or private (although due to their specific
implementation, they are not truly private in Python)

•  If the attributes are private, they serve to enforce the concept of
information hiding

Using methods in Objects
•  Methods are created just like a function,

but inside a class:
class Circle:

def myFunction(self, p1, p2):
<< something >>>

def function2(self, input1=‘55’):
 <<something>>

•  To use methods, call them using dot
notation:
 myCircle.myFunction(actualP1, actualP2)

Note: self is automatically passed in to all methods… you never pass it
in directly!

Messages
•  Process by which system components

interact:
– send data to another object
–  request data from another object
–  request object to perrform some behavior

•  Implemented as methods (not called
functions).
–  Functions are procsses that are object independet
–  Methods are dependent on the state of the object

Message Passing
•  When calling a method in another class,

OO uses the term “message passing”
you are passing messages from one
class to another

•  Don’t be confused… this is really just a
new name for calling a method or a
function

What is ‘self’
•  Self is a reference to the current

instance. Self lets you access all the
instance variables for the specific
instance you’re working with.

–  myCircle.myFunction(actualP1, actualP2)
•  is like calling:

–  Circle.myFunction(myCircle,actualP1, actualP2)
•  “self” really gets the value of “myCircle”.. but

it happens automatically!

Do this

Not this

Why use classes at all?
•  Classes and objects are more like the real

world. They minimize the semantic gap by
modeling the real world more closely

•  The semantic gap is the difference between
the real world and the representation in a
computer.

• 
Do you care how your TV works?
–  No… you are a user of the TV, the TV has

operations and they work. You don’t care how.

Why use classes at all?
•  Classes and objects allow you to define

an interface to some object (it’s
operations) and then use them without
know the internals.

•  Defining classes helps modularize your
program into multiple objects that work
together, that each have a defined
purpose

Encapsulation
•  Attributes and behaviors are enclosed

(encapsulated) within the logical boundary of the
object entity

–  In structured or procedural systems, data and code
are typically maintained as separate entities (e.g.,
modules and data files)

–  In Object Technology systems, each object contains
the data (attributes) and the code (behaviors) that
operates upon those attributes

Abstraction
•  Encapsulation implements the concept of

abstraction:

–  details associated with object sub-components are
enclosed within the logical boundary of the object

–  user of object only “sees” the public interface of the
object, all the internal details are hidden

Note - In Python, encapsulation is merely a programming convention.
Other languages (e.g., Java) enforce the concept more rigorously.

Abstraction

Behaviors

Attributes

Public
Interface

User of object “sees” the
abstract version of the

object through the public
interface defined by the

objectInterface

Encapsulation makes abstraction possible

Abstraction in your life

You know the public
interface. Do you know
implementation details?

Do you care?

?

As long as the public interface stays the
same, you don’t care about

implementation changes

Implementing Public/Private Interfaces

Can we ENFORCE use of getters and setters? If
I design a class I would like to make sure no one
can access my instance variables directly, they
MUST use my getters and setters

•  CS211 Preview: In Java you will be able to enforce
access restrictions on your instance variables… you
can (and should) make them private so Java itself
enforces data encapsulation.

•  So… does Python support “private” instance
variables? Yes (and no)

Implementing Public/Private Interfaces

•  Python attributes and methods are public by
default.

– public attributes: any other class or function can see
and change the attribute myCircle.radius = 20
– public method: any other class or function can call
the method myCircle.method1()

•  Make things private by adding __ (two
underscores) to the beginning of the name:

–  self.__radius = 20 # Private attribute
– def __method1(): # Private method

Implementing Public/Private Interfaces

•  Private attributes can (almost) only be
accessed by methods defined in the class

•  Private methods can (almost) only be called by
other methods defined in the class

• Idea: Everything defined in the class has access
to private parts.

Hiding your private parts (in Python)

•  You can create somewhat private parts in Python. Naming an
instance variable with an __ (two underscores) makes it private.

Hiding your private parts (in Python)

•  Be a little sneakier then.. use __name:

Nice try, but that won’t work!

Hiding your private parts (in Python)
•  Be super sneaky then.. use _Student__name:

Ahh… you saw my private parts… that was rude!

So, it is possible to interact with private data in Python, but it is difficult
and good programers know not to do it. Using the defined interface
methods (getters and setters) will make code more maintainable and
safer to use

Getters and Setters (or)
Accessors and Mutators

•  These methods are a coding convetion
•  Getters/Accessors are methods that

return an attribute
– def get_name(self):

•  Setters/Mutators are methods that set
an attribute
– def set_name(self,newName):

Why use getters?
•  Definition of my getter:

 def getName(self):
 return self.name

What if I want to store the name instead as first and last name in the class?
Well, with the getter I only have to do this:
 def getName(self):
 return self.firstname + self.lastname

If I had used dot notation outside the class, then all the code OUTSIDE the
class would need to be changed because the internal structure INSIDE the
class changed. Think about libraries of code… If the Python-authors change
how the Button class works, do you want to have to change YOUR code?
No! Encapsulation helps make that happen. They can change anything
inside they want, and as long as they don’t change the method signatures,
your code will work fine.

Getters help you hide the internal structure of your class!

Setters
•  Anoter common method type are “setters”
•  def setAge(self, age):

 self.age = age

Why? Same reason + one more. I want to hide the internal structure of my
Class, so I want people to go through my methods to get and set instance
variables. What if I wanted to start storing people’s ages in dog-years?
Easy with setters:
 def setAge(self, age):
 self.age = age / 7

More commonly, what if I want to add validation… for example, no age can
be over 200 or below 0? If people use dot notation, I cannot do it. With
setters:
 def setAge(self, age):
 if age > 200 or age < 0:
 # show error
 else:
 self.age = age / 7

Getters and Setters

•  Getters and setters are useful to provide data
encapsulation. They hide the internal structure of
your class and they should be used!

Printing objects
>>> aStudent = Student("Karl","Johnson", 18)
>>> print aStudent
<__main__.Student object at 0x8bd70>

Doesn’t look so good! Define a special function in the class
“__str__” that is used to convert your boject to a string whenever
needed

def __str__(self):
 return "Name is:"+ self.__name

Name is:KarlJohnson

•  See BouncingBall Slides.

Data Processing with Class
•  A class is useful for modeling a real-world

object with complex behavior.
•  Another common use for objects is to group

together a set of information that describes a
person or thing.
–  Eg., a company needs to keep track of information

about employees (an Employee class with
information such as employee’s name, social
security number, address, salary, etc.)

Data Processing with Class
•  Grouping information like this is often

called a record.
•  Let’s try a simple data processing

example!
•  A typical university measures courses in

terms of credit hours, and grade point
averages are calculated on a 4 point
scale where an “A” is 4 points, a “B” is
three, etc.

Data Processing with Class
•  Grade point averages are generally

computed using quality points. If a class
is worth 3 credit hours and the student
gets an “A”, then he or she earns
3(4) = 12 quality points. To calculate the
GPA, we divide the total quality points
by the number of credit hours
completed.

Data Processing with Class
•  Suppose we have a data file that

contains student grade information.
•  Each line of the file consists of a

student’s name, credit-hours, and
quality points.
Adams, Henry 127 228
Comptewell, Susan 100 400
DibbleBit, Denny 18 41.5
Jones, Jim 48.5 155
Smith, Frank 37 125.33

Data Processing with Class
•  Our job is to write a program that reads

this file to find the student with the best
GPA and print out their name, credit-
hours, and GPA.

•  The place to start? Creating a Student
class!

•  We can use a Student object to store
this information as instance variables.

Data Processing with Class
•  class Student:

 def __init__(self, name, hours, qpoints):
 self.name = name
 self.hours = float(hours)
 self.qpoints = float(qpoints)

•  The values for hours are converted to
float to handle parameters that may be
floats, ints, or strings.

•  To create a student record:
aStudent = Student(“Adams, Henry”, 127, 228)

•  The coolest thing is that we can store all the
information about a student in a single
variable!

Data Processing with Class
•  We need to be able to access this information, so we

need to define a set of accessor methods.
•  def getName(self):

 return self.name

 def getHours(self):
 return self.hours

 def getQPoints(self):
 return self.qpoints

 def gpa(self):
 return self.qpoints/self.hours

•  For example, to print a student’s name you could
write:
print aStudent.getName()

•  aStudent.name

These are commonly
called “getters”

Data Processing with Class
•  How can we use these tools to find the

student with the best GPA?
•  We can use an algorithm similar to

finding the max of n numbers! We could
look through the list one by one,
keeping track of the best student seen
so far!

Data Processing with Class
Pseudocode:
Get the file name from the user

Open the file for reading

Set best to be the first student

For each student s in the file

 if s.gpa() > best.gpa

 set best to s

Print out information about best

Data Processing with Class
gpa.py
Program to find student with highest GPA
import string

class Student:

 def __init__(self, name, hours, qpoints):
 self.name = name
 self.hours = float(hours)
 self.qpoints = float(qpoints)

 def getName(self):
 return self.name

 def getHours(self):
 return self.hours

 def getQPoints(self):
 return self.qpoints

 def gpa(self):
 return self.qpoints/self.hours

def makeStudent(infoStr):
 name, hours, qpoints = string.split(infoStr,"\t")
 return Student(name, hours, qpoints)

def main():
 filename = raw_input("Enter name the grade file: ")
 infile = open(filename, 'r')
 best = makeStudent(infile.readline())
 for line in infile:
 s = makeStudent(line)
 if s.gpa() > best.gpa():
 best = s
 infile.close()
 print "The best student is:", best.getName()
 print "hours:", best.getHours()
 print "GPA:", best.gpa()

if __name__ == '__main__':
 main()

Helping other people use your classes

•  Frequently, you will need to write classes other
people will use

•  Or classes you will want to use later, but have
forgotton how

Answer: Document your class usage!

Putting Classes in Modules
•  Sometimes we may program a class that

could useful in many other programs.
•  If you might be reusing the code again, put

it into its own module file with
documentation to describe how the class
can be used so that you won’t have to try
to figure it out in the future from looking at
the code!

Module Documentation
•  You are already familiar with “#” to indicate

comments explaining what’s going on in a
Python file.

•  Python also has a special kind of
commenting convention called the
docstring. You can insert a plain string
literal as the first line of a module, class, or
function to document that component.

Module Documentation
•  Why use a docstring?

–  Ordinary comments are ignored by Python
–  Docstrings are accessible in a special attribute

called __doc__.
•  Most Python library modules have extensive

docstrings. For example, if you can’t
remember how to use random:
>>> import random
>>> print random.random.__doc__
random() -> x in the interval [0, 1).

Module Documentation
•  Docstrings are also used by the Python online

help system and by a utility called PyDoc that
automatically builds documentation for
Python modules. You could get the same
information like this:
>>> import random
>>> help(random.random)
Help on built-in function random:

random(...)
 random() -> x in the interval [0, 1).

Module Documentation
•  To see the documentation for an entire

module, try typing help(module_name)!
•  The following code for the projectile

class has docstrings.

Module Documentation
projectile.py

"""projectile.py
Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos

class Projectile:

 """Simulates the flight of simple projectiles near the earth's
 surface, ignoring wind resistance. Tracking is done in two
 dimensions, height (y) and distance (x)."""

 def __init__(self, angle, velocity, height):
 """Create a projectile with given launch angle, initial
 velocity and height."""
 self.xpos = 0.0
 self.ypos = height
 theta = pi * angle / 180.0
 self.xvel = velocity * cos(theta)
 self.yvel = velocity * sin(theta)

Module Documentation
 def update(self, time):
 """Update the state of this projectile to move it time seconds
 farther into its flight"""
 self.xpos = self.xpos + time * self.xvel
 yvel1 = self.yvel - 9.8 * time
 self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0
 self.yvel = yvel1

 def getY(self):
 "Returns the y position (height) of this projectile."
 return self.ypos

 def getX(self):
 "Returns the x position (distance) of this projectile."
 return self.xpos

PyDoc
•  PyDoc The pydoc module automatically

generates documentation from Python
modules. The documentation can be
presented as pages of text on the
console, served to a Web browser, or
saved to HTML files.

•  pydoc –g # Launch the GUI

Object Oriented Programming
in Python:

Defining Classes

It’s all objects…
• Everything in Python is really an object.

• We’ve seen hints of this already…
“hello”.upper()
list3.append(‘a’)
dict2.keys()

• These look like Java or C++ method calls.
• New object classes can easily be defined in

addition to these built-in data-types.
• In fact, programming in Python is typically

done in an object oriented fashion.

Defining a Class

• A class is a special data type which defines
how to build a certain kind of object.

• The class also stores some data items that are
shared by all the instances of this class

• Instances are objects that are created which
follow the definition given inside of the class

• Python doesn’t use separate class interface
definitions as in some languages

• You just define the class and then use it

Methods in Classes

• Define a method in a class by including
function definitions within the scope of the
class block

• There must be a special first argument self
in all of method definitions which gets bound
to the calling instance

• There is usually a special method called
__init__ in most classes

• We’ll talk about both later…

A simple class def: student

class student:
“““A class representing a
student ”””
def __init__(self,n,a):
 self.full_name = n
 self.age = a
def get_age(self):
 return self.age

Creating and Deleting
Instances

Instantiating Objects
• There is no “new” keyword as in Java.
• Just use the class name with () notation and

assign the result to a variable
• __init__ serves as a constructor for the

class. Usually does some initialization work
• The arguments passed to the class name are

given to its __init__() method
• So, the __init__ method for student is passed
“Bob” and 21 and the new class instance is
bound to b:

b = student(“Bob”, 21)

Constructor: __init__
• An __init__ method can take any number of

arguments.
• Like other functions or methods, the

arguments can be defined with default values,
making them optional to the caller.

• However, the first argument self in the
definition of __init__ is special…

Self

• The first argument of every method is a
reference to the current instance of the class

• By convention, we name this argument self
• In __init__, self refers to the object

currently being created; so, in other class
methods, it refers to the instance whose
method was called

• Similar to the keyword this in Java or C++
• But Python uses self more often than Java

uses this

Self
• Although you must specify self explicitly

when defining the method, you don’t include it
when calling the method.

• Python passes it for you automatically

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)
self.age = num

Deleting instances: No Need to “free”

• When you are done with an object, you don’t
have to delete or free it explicitly.

• Python has automatic garbage collection.
• Python will automatically detect when all of the

references to a piece of memory have gone
out of scope. Automatically frees that
memory.

• Generally works well, few memory leaks
• There’s also no “destructor” method for

classes

Access to Attributes
and Methods

Definition of student

class student:
“““A class representing a student
 ”””
def __init__(self,n,a):
 self.full_name = n
 self.age = a
def get_age(self):
 return self.age

Traditional Syntax for Access

>>> f = student(“Bob Smith”, 23)

>>> f.full_name # Access attribute

“Bob Smith”

>>> f.get_age() # Access a method

23

Accessing unknown members

• Problem: Occasionally the name of an attribute
or method of a class is only given at run time…

• Solution:
getattr(object_instance, string)

• string is a string which contains the name of
an attribute or method of a class

•  getattr(object_instance, string)
returns a reference to that attribute or method

getattr(object_instance, string)
>>> f = student(“Bob Smith”, 23)
>>> getattr(f, “full_name”)
“Bob Smith”
>>> getattr(f, “get_age”)
 <method get_age of class
studentClass at 010B3C2>

>>> getattr(f, “get_age”)() # call it
23
>>> getattr(f, “get_birthday”)
Raises AttributeError – No method!

hasattr(object_instance,string)

>>> f = student(“Bob Smith”, 23)
>>> hasattr(f, “full_name”)
True
>>> hasattr(f, “get_age”)
True
>>> hasattr(f, “get_birthday”)
False

Attributes

Two Kinds of Attributes
• The non-method data stored by objects are

called attributes
• Data attributes

• Variable owned by a particular instance of a class
• Each instance has its own value for it
• These are the most common kind of attribute

• Class attributes
• Owned by the class as a whole
• All class instances share the same value for it
• Called “static” variables in some languages
• Good for (1) class-wide constants and (2)

building counter of how many instances of the
class have been made

Data Attributes
• Data attributes are created and initialized by

an __init__() method.
•  Simply assigning to a name creates the attribute
•  Inside the class, refer to data attributes using self

— for example, self.full_name
class teacher:
“A class representing teachers.”
def __init__(self,n):
 self.full_name = n
def print_name(self):
 print self.full_name

Class Attributes
• Because all instances of a class share one copy of a

class attribute, when any instance changes it, the value
is changed for all instances

• Class attributes are defined within a class definition and
outside of any method

• Since there is one of these attributes per class and not
one per instance, they’re accessed via a different
notation:
•  Access class attributes using self.__class__.name notation

-- This is just one way to do this & the safest in general.

class sample: >>> a = sample()
 x = 23 >>> a.increment()
 def increment(self): >>> a.__class__.x
 self.__class__.x += 1 24

Data vs. Class Attributes

class counter:
overall_total = 0
 # class attribute
def __init__(self):
 self.my_total = 0
 # data attribute
def increment(self):
 counter.overall_total = \
 counter.overall_total + 1
 self.my_total = \
 self.my_total + 1

>>> a = counter()
>>> b = counter()
>>> a.increment()
>>> b.increment()
>>> b.increment()
>>> a.my_total
1
>>> a.__class__.overall_total
3
>>> b.my_total
2
>>> b.__class__.overall_total
3

Inheritance

Subclasses
• Classes can extend the definition of

other classes
• Allows use (or extension) of methods and

attributes already defined in the previous one
• To define a subclass, put the name of

the superclass in parens after the
subclass’s name on the first line of the
definition
 Class Cs_student(student):
• Python has no ‘extends’ keyword like Java
• Multiple inheritance is supported

Multiple Inheritance
• Python has two kinds of classes: old and new (more

on this later)
• Old style classes use depth-first, left-to-right access
• New classes use a more complex, dynamic approach

class AO(): x = 0
class BO(AO): x = 1
class CO(AO): x = 2
class DO(BO,CO): pass

ao = AO()
bo = BO()
co = CO()
do = DO()

>>> from mi import *
>>> ao.x
0
>>> bo.x
1
>>> co.x
2
>>> do.x
1
>>>

http://cs.umbc.edu/courses/331/current/code/python/mi.py

Redefining Methods
• To redefine a method of the parent class,

include a new definition using the same name
in the subclass
•  The old code won’t get executed

• To execute the method in the parent class in
addition to new code for some method,
explicitly call the parent’s version of method

parentClass.methodName(self,a,b,c)

• The only time you ever explicitly pass ‘self’
as an argument is when calling a method of an
ancestor

Definition of a class extending student
Class Student:
“A class representing a student.”

 def __init__(self,n,a):
 self.full_name = n
 self.age = a

 def get_age(self):
 return self.age

Class Cs_student (student):
“A class extending student.”

def __init__(self,n,a,s):
 student.__init__(self,n,a) #Call __init__ for student
 self.section_num = s

def get_age(): #Redefines get_age method entirely
 print “Age: ” + str(self.age)

Extending __init__

Same as redefining any other method…
• Commonly, the ancestor’s __init__ method is

executed in addition to new commands
• You’ll often see something like this in the
__init__ method of subclasses:

 parentClass.__init__(self, x, y)

 where parentClass is the name of the parent’s
class

Special Built-In
Methods and Attributes

Built-In Members of Classes
• Classes contain many methods and

attributes that are always included
• Most define automatic functionality triggered

by special operators or usage of that class
• Built-in attributes define information that must

be stored for all classes.
• All built-in members have double

underscores around their names:
__init__ __doc__

Special Methods

• E.g., the method __repr__ exists for all
classes, and you can always redefine it
• __repr__ specifies how to turn an instance

of the class into a string
• print f sometimes calls f.__repr__() to

produce a string for object f

• Typing f at the REPL prompt calls
__repr__ to determine what to display as
output

Special Methods – Example

class student:
 ...
 def __repr__(self):
 return “I’m named ” + self.full_name
 ...

>>> f = student(“Bob Smith”, 23)

>>> print f
I’m named Bob Smith

>>> f

“I’m named Bob Smith”

Special Methods

• You can redefine these as well:
__init__ : The constructor for the class
__cmp__ : Define how == works for class
__len__ : Define how len(obj) works
__copy__ : Define how to copy a class

• Other built-in methods allow you to give a
class the ability to use [] notation like an array
or () notation like a function call

Special Data Items
• These attributes exist for all classes.
__doc__ : Variable for documentation string for class
__class__ : Variable which gives you a

reference to the class from any instance of it
__module__ : Variable which gives a reference to

the module in which the particular class is defined
__dict__ :The dictionary that is actually the

namespace for a class (but not its superclasses)
• Useful:
• dir(x) returns a list of all methods and attributes

defined for object x

Special Data Items – Example
>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__

A class representing a student.

>>> f.__class__

< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”,
34)

Private Data and Methods
• Any attribute/method with two leading under-

scores in its name (but none at the end) is
private and can’t be accessed outside of
class

• Note: Names with two underscores at the
beginning and the end are for built-in
methods or attributes for the class

• Note: There is no ‘protected’ status in
Python; so, subclasses would be unable to
access these private data either

